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Abstract

In this paper, we present a smooth approximation method to calculate the effective potential in a longitudinal RF

accelerating and focusing system. Comparing with the smooth approximation without acceleration, this method gives a

more accurate calculation of the zero-current phase advance and effective potential when the energy gain through a

period is not negligible. Using such a smooth approximation, we have studied an alternating phase focusing structure in

a proposed accelerator-driven test facility superconducting linac. A self-consistent macroparticle simulation for one

asymmetrical alternating phase focusing structure shows that beyond a beam current of 50 mA; there will be significant
particle losses. This will put a limit on the future machine operation based on the alternating phase focusing concept.

r 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the past couple of decades, Alternating Phase
Focusing (APF) structures have been studied to
achieve simultaneously longitudinal and transverse
focusing in accelerators [1–6]. In normal-conduct-
ing accelerators like Drift-Tube Linacs (DTLs), by
controlling the driven phase of the accelerating
structure and the distance between the cavities, the
beam can be both longitudinally stable and
accelerated through the system. However, using
only APF also results in a weaker transverse

focusing strength with nonlinear fields, potential
coupling between the transverse and longitudinal
motion, and reduction of the longitudinal RF
bucket size. In a superconducting linac, due to the
increasing length of the lattice period and high
cavity accelerating gradients, the zero-current
phase advance can be greater than 901; which
may cause an envelope instability of the beam [7].
Using APF will significantly reduce the zero-
current phase advance while maintaining the same
energy gain. Meanwhile, adding external trans-
verse focusing would give separate control of
transverse and longitudinal beam dynamics.
The smooth approximation has been used in

previous studies of APF structures [1,2,4,6,8,9]. In
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those studies, the energy gain through one accel-
eration period was assumed to be negligible. This
assumption is valid for normal-conducting accel-
erators like the DTL where the accelerating
gradient is low and the energy gain is small in
one lattice period. In superconducting linacs, the
RF cavities can have much higher accelerating
gradients and the energy gain in one period may
no longer be negligible. Including the effects of
acceleration will affect the calculation of the
effective potential in a lattice period and the
calculation of the zero-current phase advance. In
this paper, we will first present a smooth approx-
imation without acceleration in Section 2. In
Section 3, the smooth approximation with accel-
eration is presented. Application to the design
of an APF superconducting linac is given in
Section 4. The conclusions are drawn in Section 5.

2. Longitudinal smooth approximation without

acceleration

For a charged particle moving inside an accel-
erator and using z as the independent variable, the
general equations of motion are
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where c is the phase relative to the reference
particle defined by c ¼ oðt � t0Þ; o is the assumed
RF frequency, t0 is the flight time of the reference
particle, pt is the normalized energy deviation with
respect to the reference particle, pt ¼ g0 � g; where

g0 is the g of the reference particle, g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
;

bi ¼ vi=c with i ¼ x; y; z; b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=g20

q
; pi ¼

gbi; c is the speed of light, m is the rest mass of
the particle, y is the initial drive phase, and the
superscript prime denotes d=dz: The electric field,
E; and magnetic field, B; include the contributions
from external focusing and accelerating fields and
the mean-field of intra-particle Coulomb interac-
tions. The trajectory of the reference particle on
the axis of the accelerator can be determined from
the following:
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where e0 is the spatial part of the on-axis external
electrical field.
For an RF linac, the electromagnetic field in a

cylindrically symmetric accelerating structure can
be obtained from
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ð9Þ

B ¼ r� A ð10Þ

where the vector potential is given by [10]
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In an APF superconducting linac design, it is
very important to know the bucket size since it
relates to the longitudinal RF focusing. For a
periodic structure, the smooth approximation can
be used to find the effective potential of the RF
field. The RF bucket size, i.e. phase acceptance
and the energy width, can be obtained from
the effective potential. Neglecting the energy
change through the lattice period, the calculation
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of the effective potential can be drastically
simplified. A closed form of the effective potential
as a function of phase can be derived. From now
on, we will consider only the dynamics of particles
on the axis. Without space-charge forces, the
equations of motion can be rewritten as
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g30b
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ð15Þ
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In above equation, e0i is the field amplitude on the
axis for the ith cavity, yi is the driven phase for
the ith cavity, the wave number k0 ¼ 2p=b0l; and
the wavelength l ¼ 2pc=o: For a lattice period L;
we can expand the function F by Fourier series as
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where kL ¼ 2p=L and

anðcÞ ¼ C1n cosðcÞ � C2n sinðcÞ � C1n ð19Þ
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The coefficients C1n; C2n; S1n; and S2n are given by
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The subscript index n for the coefficients C1n and
C2n ranges from 0 to N: For the coefficients S1n

and S2n; it ranges from 1 to N: The equation of
motion for c neglecting the energy change can be
rewritten as
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If the period of motion for a potential due to the
first term in the above equation is T ; and 1=T5kL;
the phase c can be represented as a sum of a
smooth motion term %c and a fast small oscillation
term. By averaging over the rapid oscillations, the
equation of motion for the smooth variable %c is
given as [11]
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where the r ¼ @=@ %c and the constant F0 ¼
ðo=cÞð1=g30b

3
0Þðq=mc2Þ: This equation can be re-

written as
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where the effective potential Ueff is given by
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To obtain the analytical functional dependence of
the effective potential on the phase, we substitute
Eqs. (19)–(24) into Eq. (28) and obtain

Ueff ¼U0 þ U1
%cþ U2 cosð %cÞ þ U3 sinð %cÞ

þ U4 cosð2 %cÞ þ U5 sinð2 %cÞ ð30Þ
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where
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The effective potential is a nonlinear function of
the phase %c: As a linear approximation, we assume
that %c51; therefore the effective potential is
reduced to a quadratic function of %c; i.e.
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The zero-current phase advance for this potential
is given by
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In the smooth approximation, for the slow
variables %c and %pt; the longitudinal equation of
motion can be written as
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From these equations, we can define a Hamilto-
nian,
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The phase acceptance can be found from the first
positive root of rUeff ð %cþÞ ¼ 0; i.e.

U1 � U2 sinð %cþÞ þ U3 cosð %cþÞ � 2U4 sinð2 %cþÞ
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The maximum energy width inside the RF bucket
is therefore given as
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where DUeff is the depth of the potential well.

3. Smooth approximation with acceleration

In the preceding section, we have assumed that
the particle energy remains constant through a
lattice period. The flight time of the reference
particle can be written as a linear function of
position z; i.e. t0 ¼ ð1=b0cÞz: When the effects of
acceleration are not negligible, the linear depen-
dence of flight time on position is no longer valid.
Simultaneous solution of the equations of motion
(Eqs. (7) and (8)) for the reference particle and the
equations of motion for the charged particles
(Eqs. (5) and (6)) is now required. Considering
only the longitudinal motion and neglecting
space-charge forces, the equation of motion for
the phase is
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This equation has a damping term from the first
derivative of phase c: In this case, the smooth
approximation used in the last section is no longer
applicable. After defining a new variable, f as

f ¼
ffiffiffiffiffiffiffiffiffi
g30b

3
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q
c ð47Þ
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we obtain the equation of motion for f as
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We can obtain the effective potential in the smooth
approximation for such system following the
procedure given by Channell [12]. In this proce-
dure, we assume that the trajectory of the particle
phase is the sum of a fast oscillation and a slow
smooth motion. The force driving the particle
motion can therefore be separated into two parts
corresponding to the fast and slow motion:

f ¼ %fþ *f ð52Þ

F ðf; zÞ ¼ %FðfÞ þ *Fðf; zÞ ð53Þ

where j *fj5j %fj: Substituting f into F ðf; zÞ; and
neglecting high-order terms in the Taylor expan-
sion, we obtain the equations of motion for the
fast variable and the slow variable, respectively:
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The first term on the right-hand side of Eq. (55) is
given by
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The second term on the right-hand side of Eq. (55)
is a product of two fast variables and has both a
slow and a fast component. In the equation of the
slow variable, %f; we keep only the slow component

of the product which is given by
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The approximate solution for the fast variable in
Eq. (54) can be written as
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Removing the secular growth of the fast oscillation
variable, we obtain the condition for *f0ð0Þ as
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The equation of motion for the slow variable %f is

%f00 ¼ %Fð %fÞ þ f ð %fÞ: ð61Þ

The term f ð %fÞ in the above equation is also called
the ponderomotive force. Writing Eq. (61) in the
form of the gradient of the potential, we obtain the
effective potential as

Ueff ð %fÞ ¼ �
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dxð %FðxÞ þ f ðxÞÞ: ð62Þ

From the effective potential, we can calculate the
phase acceptance and maximum energy width
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function of phase from the smooth approximation.
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following the procedure used in the last section.
Fig. 1 shows the effective potential as a function of
phase in the lattice to be described in Section 4.
The figure shows a comparison of the effective
potential with and without acceleration. Without
including the effects of acceleration, the smooth
approximation gives a weaker effective RF bucket,
i.e. smaller phase acceptance and potential well
depth, compared with the smooth approximation
with acceleration. The energy gain in this case is
0:36 MeV and the zero-current phase advance is
901: The linear zero-current phase advance can
also be calculated from the linear expansion of the
restoring force around zero. This gives

s0l ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
@ %F

@ %f
�

@f

@ %f

s
: ð63Þ

Fig. 2 shows the zero-current phase advance as a
function of energy gain per period by changing the
RF field level in Fig. 3. At lower energy gain and
phase advance, both the transfer matrix calcula-
tion [13] and the smooth approximation with/
without acceleration agree well. With increasing
energy gain, the phase advance difference between
the smooth approximation and the transfer matrix
gradually increases. However, below 901 phase
advance, the smooth approximation with accel-
eration still gives very good agreement with the
transfer-matrix calculation while the smooth
approximation without acceleration underesti-

mates the phase advance in this regime. Beyond
901 phase advance, the linear expansion used in the
calculation of phase advance in the smooth
approximation is no longer valid. This results in
the discrepancy observed in Fig. 2. In general, the
zero-current phase advance calculated from the
smooth approximation with acceleration gives
better agreement with the transfer matrix calcula-
tion than with the smooth approximation without
acceleration.

4. Longitudinal alternating phase focusing in a

superconducting linac

The smooth approximation with acceleration
has been applied to the study of longitudinal
alternating phase focusing in the proposed Accel-
erator-Driven Test Facility (ADTF) accelerator
design [14]. A schematic plot of one period of the
accelerator structure is shown in Fig. 3. It consists
of a superconducting solenoid for transverse
focusing and two superconducting spoke-resona-
tor RF cavities for acceleration and longitudinal
focusing. By adjusting the drive phase of the two
cavities, we can achieve the same acceleration but
with one cavity focusing and the other cavity
defocusing. This will reduce the total zero-current
phase advance in one period and may avoid the
envelope instability when the zero-current phase
advance is greater than 901: Using the longitudinal
alternating phase focusing also reduces the mag-
netic field strength requirement for the external
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transverse focusing from the solenoid. Fig. 4
shows the zero-current phase advance, energy gain
per period, phase acceptance, and energy width as
a function of the reference phase in the second RF
cavity for three reference phases, �451;�601; and
�751; in the first RF cavity. The particle initial
kinetic energy is 6:52 MeV: The average RF field
level on the axis is 3:0 MV=m: We see that with
increasing reference phase in the second RF cavity,
the zero-current phase advance, energy gain per
period, phase acceptance and energy width all
decrease. The smaller reference phase in the first
cavity gives a larger energy gain per period, but
smaller phase acceptance and energy width. Given
the fixed zero-current phase advance, the smaller
reference phase in the second RF cavity also
results in smaller reference phase in the first cavity

with fixed RF field level. This will result in higher
energy gain per period but lower phase acceptance
and energy width. A compromise has to be made
between the energy gain and the size of the RF
bucket.
For a different initial input kinetic energy, the

zero-current phase advance, energy gain per
period, and the size of RF bucket will change.
Fig. 5 shows the zero-current phase advance,
energy gain per period, phase acceptance and
energy width as a function of reference phase in
the second RF cavity with a �601 reference phase
in the first cavity and initial kinetic energies of 6.52
and 20 MeV: With high initial particle kinetic
energy, the energy gain per period increases, the
zero-current phase advance decreases, and the
phase acceptance decreases. There is a cross-over
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point for the energy width as a function of
reference phase. Below this point, the higher initial
energy particle will have a larger energy width and
above it, the higher initial energy particle will have
a smaller energy width. Since the zero-current
phase advance has been significantly lowered
below 901 at 20-MeV initial energy, the reference
phase in the second RF cavity can be chosen
towards the lower end without worrying about the
potential envelope instability. This will also help to
increase the energy gain per period, increase the
energy width and leads to a smaller reduction of
the phase acceptance.
Fig. 6 shows the zero-current phase advance,

energy gain per period, phase acceptance, and
energy width for average RF field levels of 3 and

5 MV=m; and an initial kinetic energy of
6:52 MeV: We see that even though the energy
gain, phase acceptance and energy width have
been improved with higher RF field value, the zero
current phase advance also increases. For the
given zero-current phase advance in the ADTF
accelerator design, this limits the RF field level
that can be used.
From the above parameter scanning study, we

have selected one reference case with a reference
phase of �751 in the first cavity and þ451 in the
second cavity. We have done self-consistent 3D
macroparticle simulation using the IMPACT code
[15] to find the current limit in such a structure.
The initial normalized transverse emittance is
0:026 cm mrad and the longitudinal emittance is
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0:171MeV. The average acceleration gradient used
here ramps up from 3 to 9 MV=m to keep the
longitudinal zero-current phase advance equal to

891: The solenoid magnetic field is also ramped
from 2.16 to 2:75 T to maintain a 751 zero-current
transverse phase advance. Fig. 7 shows the kinetic
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energy of the beam as a function of distance
through 20 periods of RF structure from the
simulation. We see that after 45 m; the kinetic
energy has reached 21:5 MeV: Compared with the
original design based on conventional phase
focusing [14], the kinetic energy has increased by
3:3 MeV: Fig. 8 shows the beam fraction loss at
the end of the simulation as a function of input
current. Beyond 50 mA; the particle loss increases
significantly. This will put an upper boundary on
beam intensity in future machine operation if the
APF approach is used.

5. Conclusions

From the above study, we have shown that
including the effects of acceleration in the smooth
approximation to longitudinal RF focusing results
in better agreement with transfer matrix calcula-
tions than the usual smooth approximation with-
out acceleration in the calculation of zero-current
phase advance. Hence, the effective potential from
the smooth approximation with acceleration can
be quantitatively different from that without
acceleration. Using such a smooth approximation,
we have studied an alternating phase focusing
structure in the proposed ADTF superconducting
linac by scanning the reference phase in the second
RF cavity subject to different values of reference
phase in the first RF cavity, namely, initial particle
energy and average RF field level. Given the zero-
current phase advance and the field level, there is a
compromise between the energy gain per period
and the size of RF the bucket in choosing the
reference phases of the cavities. For a higher
energy particle, the restriction of zero-current
phase advance is reduced and the choice of
reference phases can be done to optimize both
the energy gain and RF bucket size. Raising the
average field level can improve both the energy
gain and RF bucket size but will also increase the
zero-current phase advance which is usually
limited by the envelope instability consideration.
Self-consistent macroparticle simulations for an
asymmetrical alternating phase focusing system
with a �751 reference phase for the first cavity and
a þ451 phase for the second cavity have been

completed. These results show that beyond 50 mA
of beam current, there will be significant particle
losses. This will put a limit on future machine
operation based on the alternating phase focusing
approach.
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